

US Territories Wastewater Operator Training Series

Session 11: Fixed Film Processes

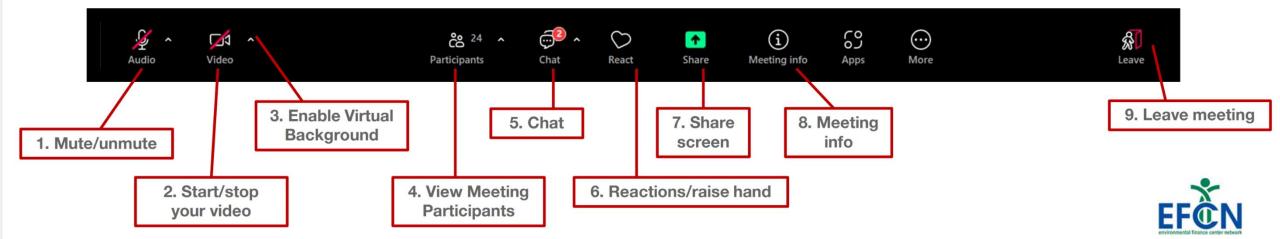
11/11/25

Your trainers for today:

James Markham Research Engineer

Valeria Cortes-Mora Professional Intern

SOUTHWEST ENVIRONMENTAL FINANCE CENTER



This training series is funded by the EPA

Attendee Meeting Controls

- Locate your control bar
- All attendees will see a black horizontal bar on their screen
- If your control bar is not visible, it may be hidden
 - Move your cursor to the screen's bottom (or top) to reveal this control bar.

WPI/ABC Operator Certification

Get the latest water industry news, insights, and resources from our new blog IMMERSE. Check it out!

Superior Water Starts Here

Ask WooPI!

Make A Payment

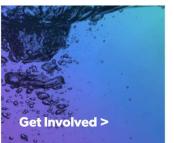
TESTING SERVICES ▼ CERTIFICATION ▼ MEMBERSHIP ▼ ABOUT US ▼ EVENTS ▼

Q Search ...

Standardized Wastewater Treatment Operator Exams

Wastewater Treatment Operator Need-to-Know Criteria

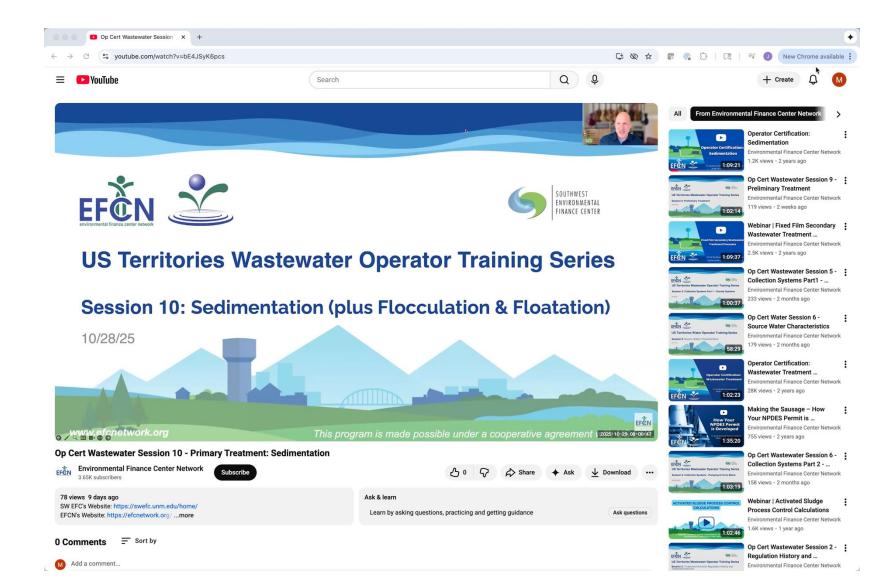
Need-to-Know Criteria outline the content that will be covered on WPI's standardized examinations provided through <u>ABC Testing</u>, a WPI service.


- Wastewater Treatment Operator Class I
- Wastewater Treatment Operator Class II
- Wastewater Treatment Operator Class III
- Wastewater Treatment Operator Class IV

Wastewater Treatment Operator Formula/Conversion Table

WPI standardized exams are administered with a Formula/Conversion Table containing mathematical formulas and common abbreviations that may be present on the exam.

Wastewater Treatment Operator Formula/Conversion Table



Schedule for 2025:

Date	Topic				
6/24/25	Program Overview, Test Format, Study & Test Tips				
7/8/25	Treatment Overview - Reg history, overview				
7/22/25	WW Math Part 1 (Areas & Volumes)				
8/5/25	WW Math Part 2 (Flow Rates & Detention Times)				
8/19/25	Collection Systems - Gravity systems				
9/2/25	Collection Systems - Pumping & force mains				
9/16/25	Collection System Maintenance				
9/30/25	Operator Safety/OSHA/Chemical Safety & Inventory				
10/14/25	Preliminary Treatment				
10/28/25	Primary Treatment: Sedimentation				
11/11/25	Fixed-Film Media				
12/2/25	Activated Sludge Part 1				
12/16/25	Activated Sludge Part 2				

https://swefc.unm.edu/home/op-cert-trainings/

Sign in for every session to ensure you get credit for attending

US Territories Water & Wastewater Operator Certification Virtual Training Series Group Attendance Sheet

Attendee Name	Attendee Signature	Arrival Time	Departu Time
		+	
		+	
		1	1

Please scan this sheet after each training session and email it to swefc@unm.edu with the subject line: "US Territories Op Cert Attendance Sheet"

Today's Agenda:

- Definitions
- History
- Design Basics
- Operational Parameters
- Modes & Classifications
- 0&M

"Fixed Film"

Microorganisms treating waste and living in solids, slimes or films attached (or "fixed") to media in the treatment process

Or micro-ranching...

Trickling Filter

RBC

(Rotating Biological Contactor)

"Trickling Filters"

Aka biofilters or biotowers

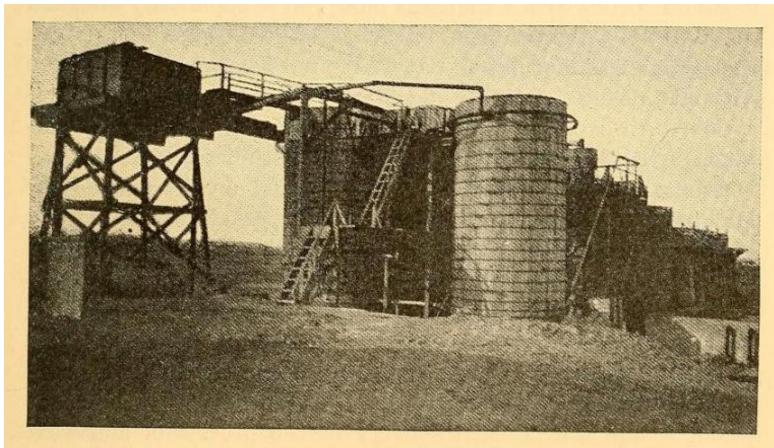
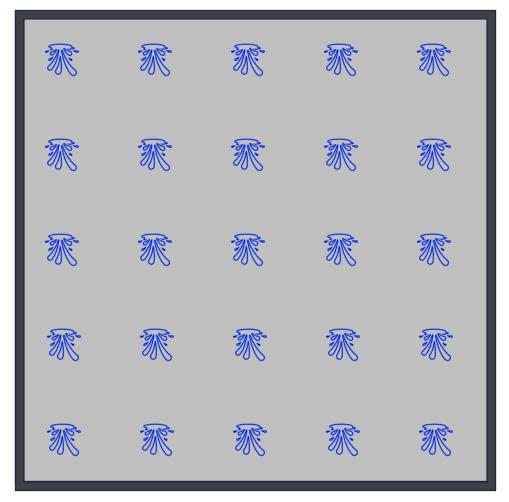
Fish Tank Version

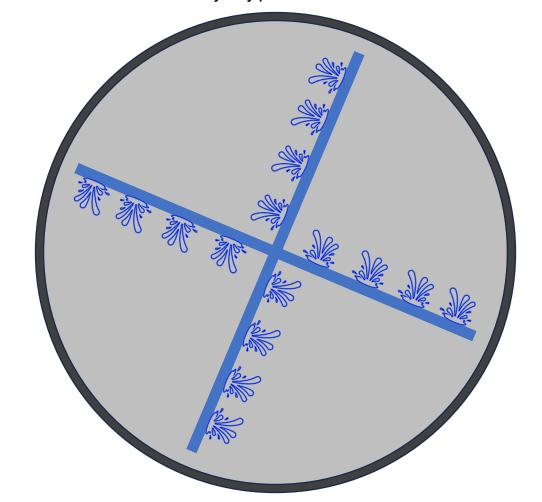
Koi Pond Version

Process

- Trickling filter biofilms will typically have aerobic and facultative bacteria
- Trickling filters generally involve BOD removal in aerobic conditions but can also achieve nitrification in the presence of oxygen under the right circumstances
- Some filters can do both BOD removal and nitrification in a single filter, in other cases these two processes are achieved in separate filter
- In single stage operations heterotroph bacteria will outcompete nitrifying bacteria
 in the upper portion of the filter as long as there is BOD available, and the
 nitrifying biomass will grow in the lower portion of the filter.
- The ability to do both processes in a single stage, and the efficiency of the nitrification process is dependent on loading rates

Activated Sludge, 1913

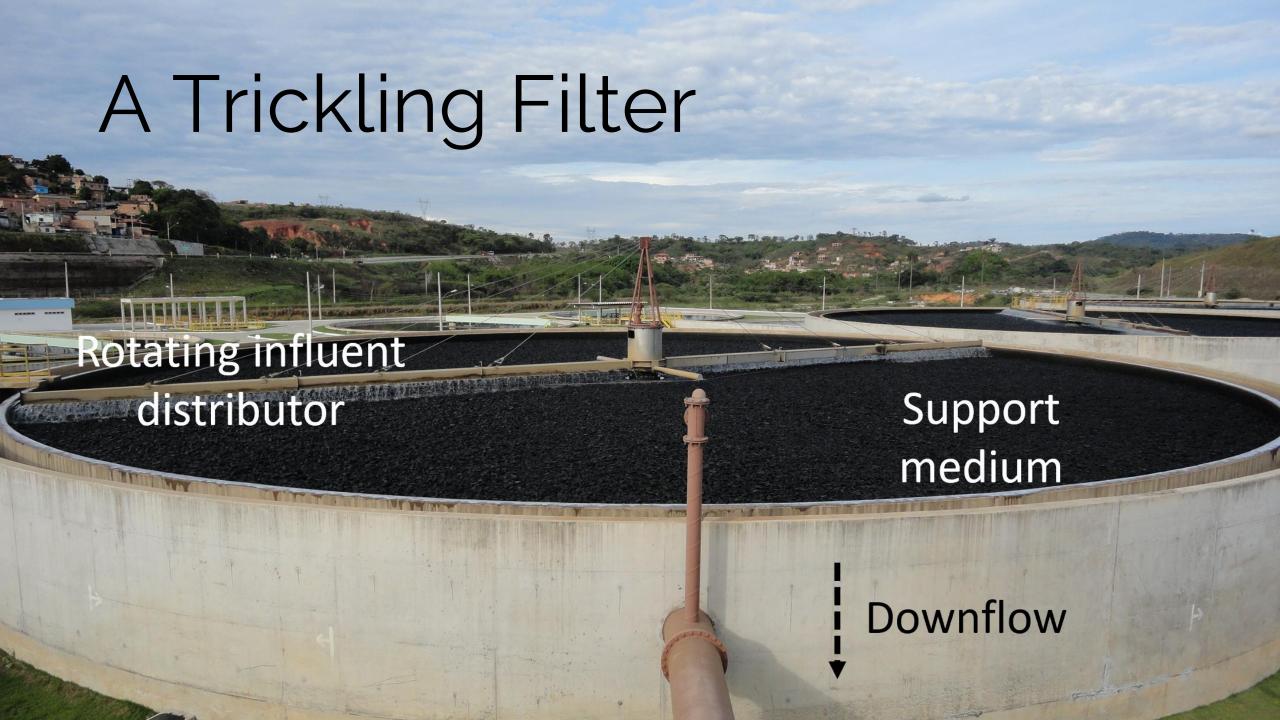

Fig. 115. Experimental Plant at Brooklyn, N. Y., showing Phelps Aerating Tank (courtesy of G. T. Hammond).

Trickle Filter Distribution Systems

Fixed Nozzle Distribution

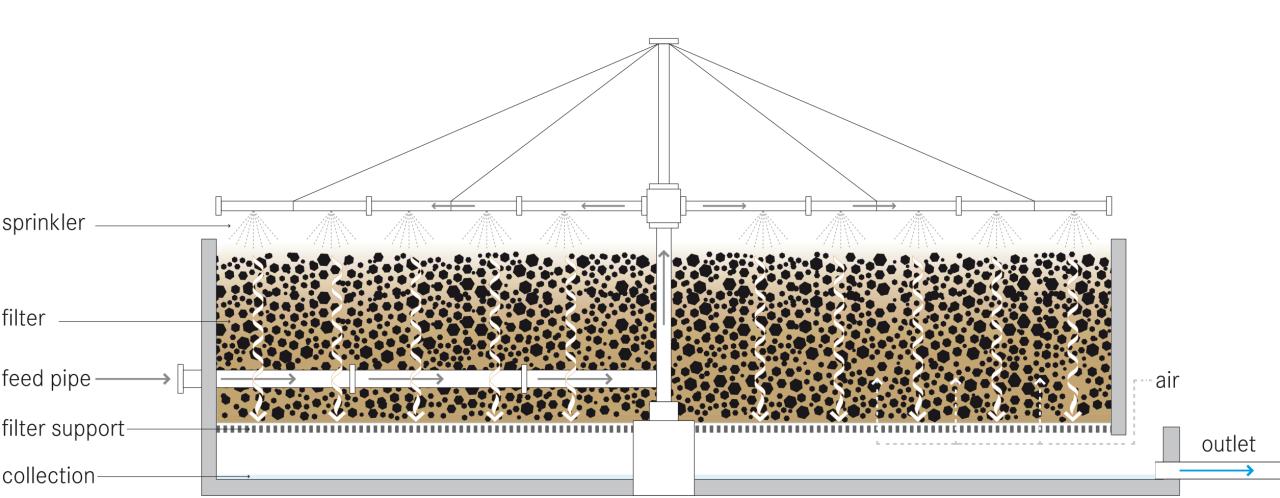
Rotary Type Distribution

Distribution Systems


Fixed Spray Heads:

- Similar to lawn sprinklers arranged in a pattern
- Not as common in the US
- Extensive piping requirements
- Pumping system for even distribution
- Difficult access for maintenance and repair

Rotating Arm:


- 2 or more rotating horizontal pipe "distributor arms"
- Water distributed through orifices on one side of pipes
- Typically move using force of wastewater flowing out
- Can be motorized to control rotational speed

Either way, the goal is uniform hydraulic load per area for optimum efficiency.

Trickling Filter Cross Section

Filter Media: Rock

Filter Media: Synthetic

Figure 1.10 Plastic Random Dump Trickling Filter Media 7

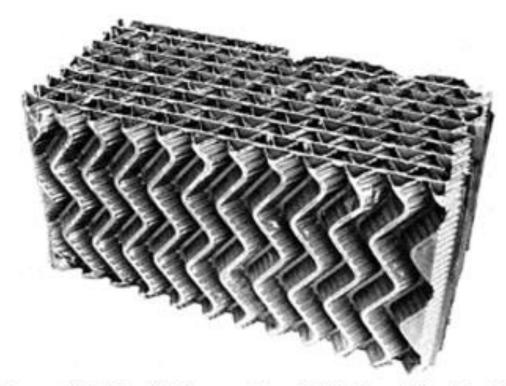
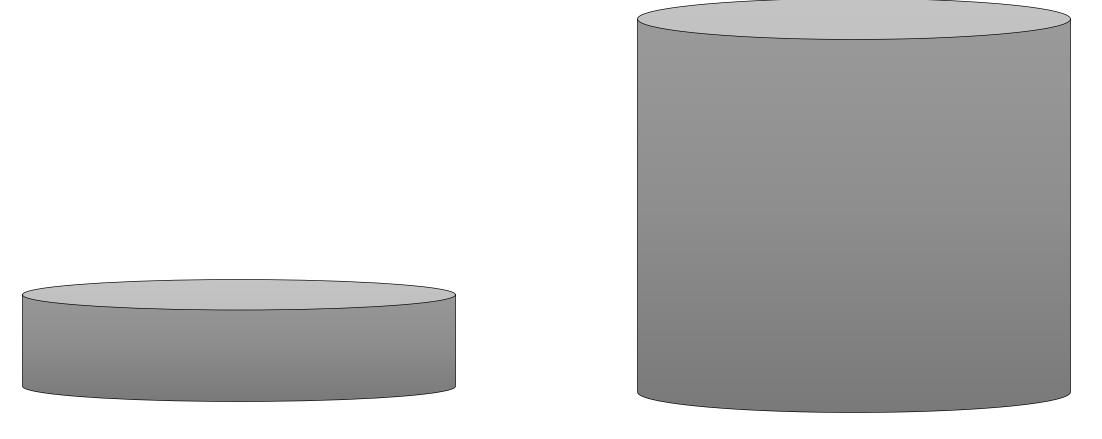



Figure 1.9 Plastic Cross Flow Trickling Filter Media 6

Media Characteristics

Media Type	Nominal Size (ft)	Surface Area (ft² of surface / ft³ of media	Void Ratio (Volume of void/vol of media) x 100	Dry Weight (lb/ft³)
River Rock	0.08 - 0.25	15 - 19	35 - 50	80 - 90
Slag Rock	0.25 - 0.42	14	40 - 100	60
Random	varies	30 - 32	92 - 95	1.7 - 3
Vertical Flow	2' x 2' x 4'	27 - 40	92 - 95	1.5 - 2.8
Cross Flow	2' x 2' x 2'	30 - 68	95	1.5 – 2.8

Containment Structures

Rock Media: Shorter (typically less than 10 feet, sides of concrete or brick

Cross and Vertical Flow Media: Can be very tall (up to 40+ feet), media is self supporting, sides may be steel or fiberglass

Underdrain

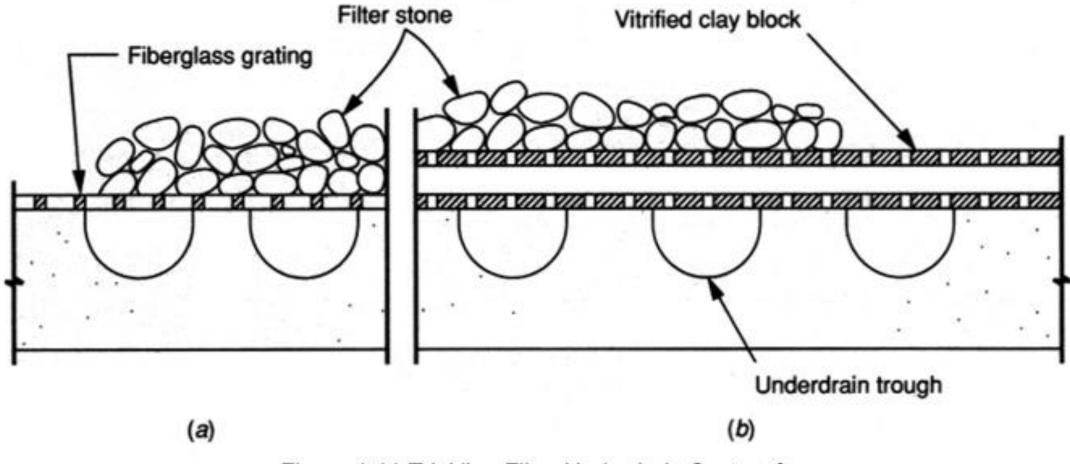
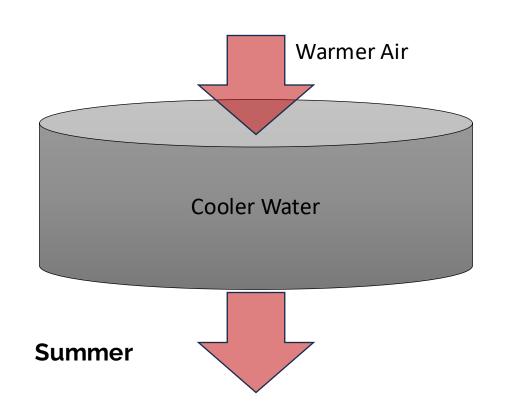
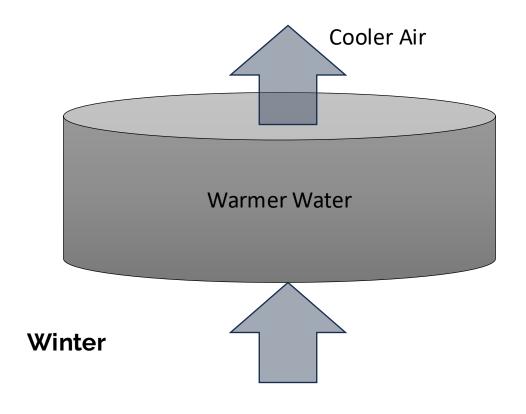




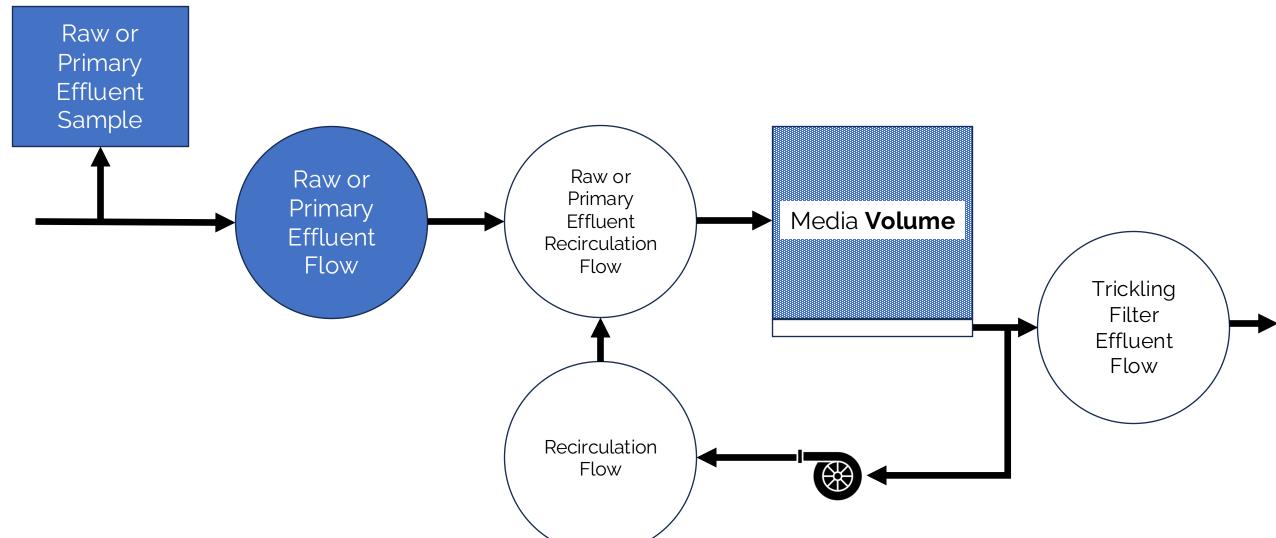
Figure 1.11 Trickling Filter Underdrain System 8

Seasonal Air Flow Changes

Design Characteristics & Efficiency

Organic Loading Rate

- How much organic matter (BOD) is fed into the system in relation to the media volume
- Expressed as:


```
\frac{lbs \ of \ BOD}{1000 \ ft^3 \ Media}
```

Hydraulic Loading Rate

- How much water is fed through the system per day in relation to the media surface area
- Expressed as:

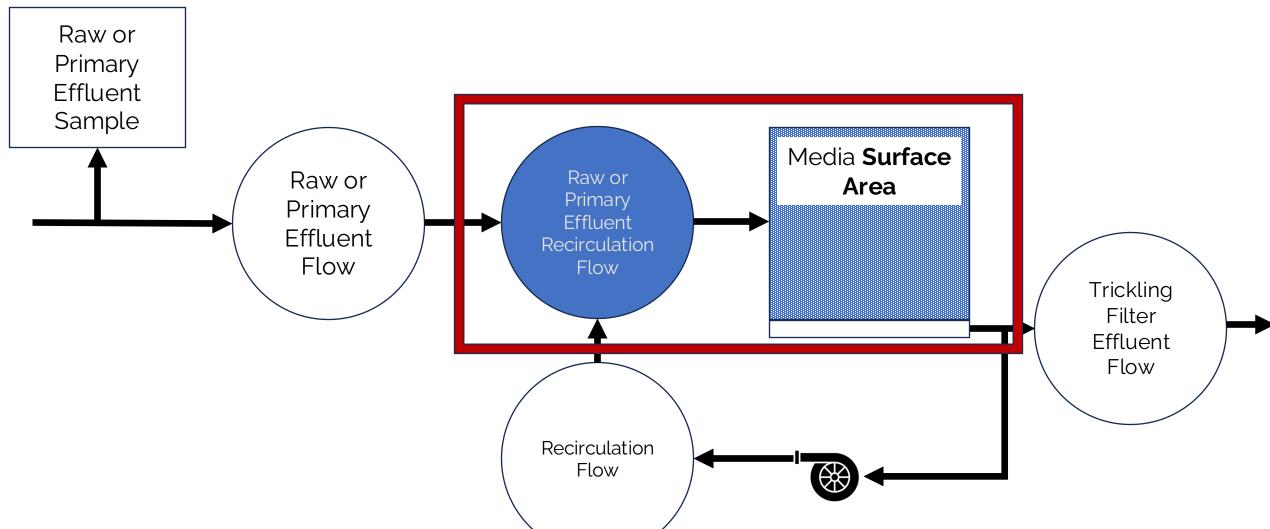
$$\frac{GPD}{ft^2}$$

Organic Loading Rate per Day

Organic Loading Rate per Day

$$OLR\left[\frac{lbs\ of\ influent\ BOD}{1,000\ ft^{3}\ of\ media\ \cdot day}\right] = \frac{Q_{in}\left[\frac{gal}{day}\right]\times\frac{3.785L}{gal}\times BOD\ concentration\ \left[\frac{mg}{L}\right]\times\frac{1kg}{1,000,000\ mg}\times\frac{2.205\ lb}{kg}}{\frac{V\ [ft^{3}]}{1000}}$$

OLR = Trickling filter organic loading rate


Q_{in} = Influent flow rate

V = Volume of Media

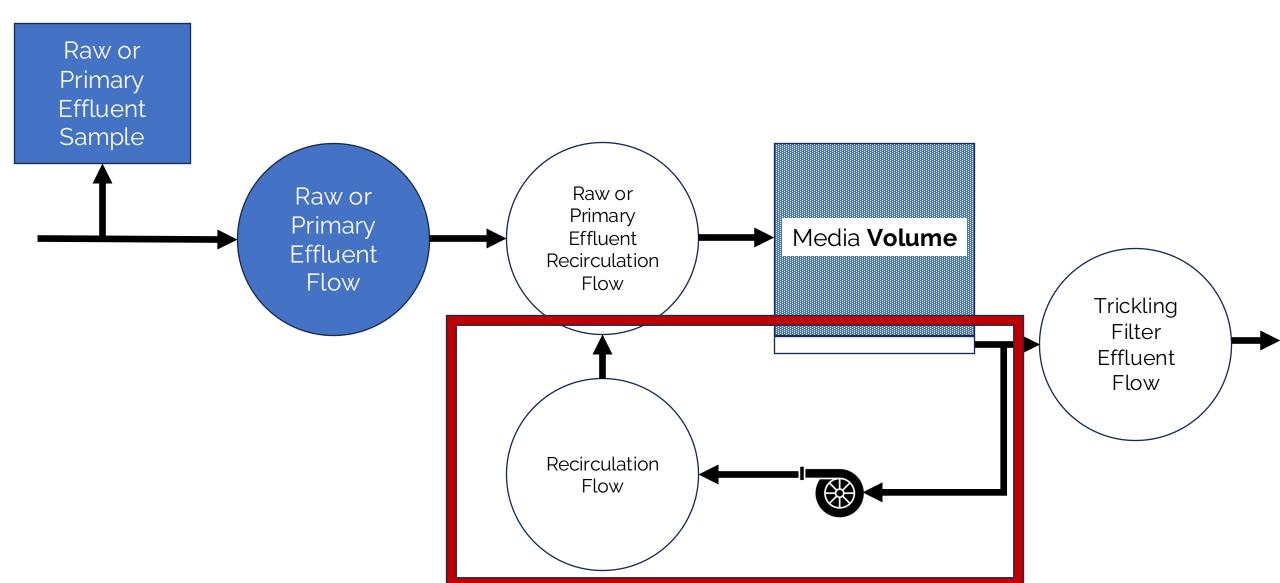
OR

$$OLR = \frac{Q_{in} \left[\frac{Mgal}{day} \right] \times \frac{8.34 L \cdot lb}{mg \cdot Mgal} \times BOD \ concentration \left[\frac{mg}{L} \right]}{\frac{V \ [ft^3]}{1000}}$$

Hydraulic Loading Rate per Day

Hydraulic Loading Rate per Day

$$HLR \left[\frac{gal \ of \ influent}{ft^2 \ of \ media \cdot day} \right] = \frac{Q_{in} \left[\frac{gal}{day} \right] + Qr \left[\frac{gal}{day} \right]}{A_{surface}[ft^2]}$$


HLR = Trickling filter hydraulic loading rate

Q_{in} = Influent flow rate

 Q_r = recirculation flow rate

A_{surface} = Media surface area

Recirculation

Recirculation

- Producing hydraulic sheer to slough solids
- Dilute wastewater to lower BOD concentrations
- Dilute toxic wastes that might be received
- Increasing contact time of water in the filter
- Increasing hydraulic loading to reduce flies, snails and other nuisances
- Reseeding the filter with microbes
- Providing uniform distribution of flow
- Preventing the filters from drying out
- Returning DO (dissolved oxygen) to the top of the filter
- Matching the hydraulic loading rate to the recommended specs for plastic media

Recirculation Ratio

$$TF \ recirculation \ ratio = \frac{Q_r \left[\overline{day} \right]}{Q_{in} \left[\frac{gal}{day} \right]}$$

 $\mathbf{Q_r}$ = Recirculation flow rate

Q_{in} = Influent flow rate

Recirculation Ratio

$$TF \ recirculation \ ratio = \frac{10 \left[\frac{Mgal}{day}\right]}{5 \left[\frac{Mgal}{day}\right]} = 2$$

 Q_r = Recirculation flow rate

Q_{in} = Influent flow rate

Dosing Rate (Spülkraft Rate)

$$DR\left[\frac{in}{pass}\right] = \frac{HLR\left[\frac{gal}{ft^2 \ of \ media \cdot day}\right] \times \frac{12 \ in}{ft}}{\frac{7.48 \ gal}{ft^3} \times N \times w\left[\frac{rev}{min}\right] \times \frac{1,440 \ min}{day}}$$

DR = Dosing rate

HLR = Trickling filter hydraulic loading rate

N = Number of arms

w = Rotational speed

Dosing Rate (Spülkraft Rate)

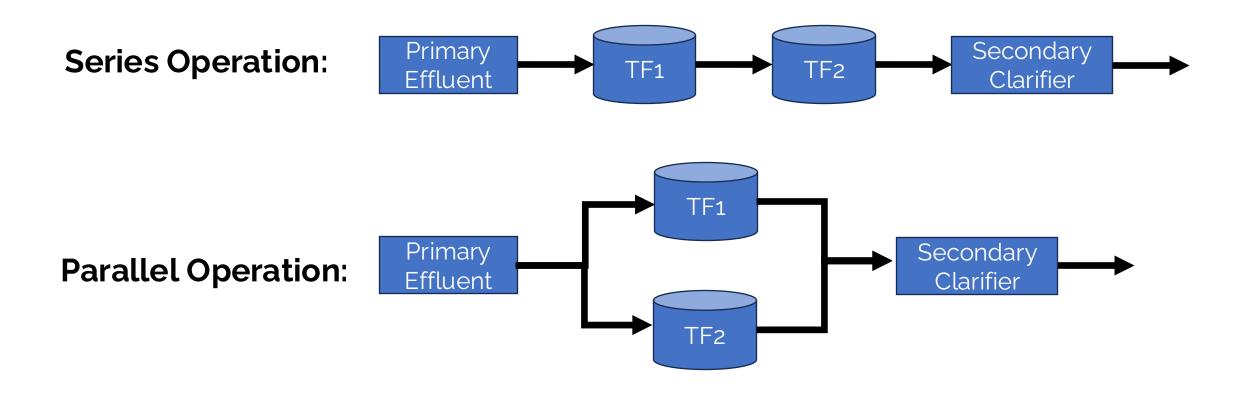
Organic Loading Rate (lbs BOD/1,000ft³/day)	Normal Operation Dosing Rate (in/pass)	Flushing Operation Dosing Rate (in/pass)
<25	1-3	4
50	2-6	6
75	3-9	9
100	4-12	12
150	6-18	18
200	8-24	24

Removal Efficiency

$$E \left[\%\right] = \frac{C_{in} \left[\frac{mg}{L}\right] - Cou_{t} \left[\frac{mg}{L}\right]}{C_{in} \left[\frac{mg}{L}\right]}$$

E = Removal Efficiency

C_{in} = Influent BOD Concentration


C_{out} = Effluent BOD Concentration

Operation: Single or Two Stage

Single Stage Operation:

Operation: Series vs Parallel

Filter Classification

Low, Intermediate, High, Roughing, Nitrifying

Design Characteristics & Efficiency: Low-Rate Filters

Wastewater Source	Media type	Media Depth (ft)	Organic Loading Rate (lb BOD ₅ / d/1000 ft³)	Hydraulic Loading Rate (GPD/ft²)	BOD Removal Rates (%)	Combined Process required for Secondary treatment	Combined Process required for Tertiary treatment
Primary Effluent	Rock	3 - 8	<25	28 -86	80 - 90	No	Yes
Primary Effluent	Random Plastic	3 - 8	<25	720 - 1,728	80 - 90	No	Yes

Design Characteristics & Efficiency: Intermediate-Rate Filters

Wastewater Source	Media type	Media Depth (ft)	Organic Loading Rate (lb BOD ₅ / d/1000 ft³)	Hydraulic Loading Rate (GPD/ft²)	BOD Removal Rates (%)	Combined Process required for Secondary treatment	Combined Process required for Tertiary treatment
Primary Effluent	Rock	6 - 8	25 - 40	25 - 100	50 - 70	Unlikely	Yes
Primary Effluent	Random Plastic, Cross & Vertical Flow	20 - 40	25 - 40	720 - 1,728	50 - 70	Unlikely	Yes

Design Characteristics & Efficiency: High-Rate Filters

Wastewater Source	Media type	Media Depth (ft)	Organic Loading Rate (lb BOD ₅ / d/1000 ft³)	Hydraulic Loading Rate (GPD/ft²)	BOD Removal Rates (%)	Combined Process required for Secondary treatment	Combined Process required for Tertiary treatment
Primary Effluent	Rock	3 - 5	40 - 100	100 - 1000	65 - 85	Likely	Yes
Primary Effluent	Plastic Cross or Vertical Flow	20 - 40	40 - 100	350 – 2100	65 - 85	Likely	Yes

Design Characteristics & Efficiency: Roughing Filters

Wastewater Source	Media type	Media Depth (ft)	Organic Loading Rate (lb BOD ₅ / d/1000 ft³)	Hydraulic Loading Rate (GPD/ft²)		Combined Process required for Secondary treatment	Combined Process required for Tertiary treatment
Primary Effluent	Plastic Vertical Flow	20 - 40	100 - 300	400 - 4200	40 – 65	Yes	Yes

Design Characteristics & Efficiency: Nitrifying Filters

Wastewater Source	Media type	Media Depth (ft)	Organic Loading Rate (lb BOD ₅ / d/1000 ft³)	Hydraulic Loading Rate (GPD/ft²)	Removal Rates (%)	Combined Process required for Secondary treatment	Combined Process required for Tertiary treatment
Secondary Effluent	Plastic Cross Flow	20 - 40	N/A	720 – 2,160	0.5 - 3 mg NH ₄ - N/L	N/A	N/A

Design Characteristics & Efficiency: Nitrifying

- Typically, nitrification with trickling filters is done in two-stage process for optimization
- Nitrification can take place in a single filter if the organic loading rate is relatively low
- And when
 - heterotrophic bacteria colonize the upper portion of the filter
 - o autotrophic bacteria colonize the lower portion of the filter

Single Stage Nitrifying Trickling Filter Nitrification Efficiencies

Media Type	Loading Rate (lb BOD/1,000 ft³)	% Nitrification
Random Rock	3 - 10	85 - 95
Random Plastic	12 - 18	75 - 85
Sheet Plastic	6 - 12	85 -95

Sampling Requirements

Parameter	Sampling Frequency	Location(s)	Typical Ranges
TSS	Daily or Weekly	Influent Primary effluent Final Effluent	150 - 400 mg/L 60 - 150 mg/L 15 - 40 mg/L
BOD5	Weekly	Influent Primary effluent Final Effluent	150 - 400 mg/L 100 - 380 mg/L 15 - 40 mg/L
COD	Daily or Weekly	Influent Primary effluent Final Effluent	300 - 800 mg/L 200 - 380 mg/L 60 - 120 mg/L
DO	Daily or Continuously	Filter underflow Filter effluent	3.0 - 8.0 mg/L 1.5 - 2.0 mg/L
рН	Daily or Continuously	Influent Effluent	6.8 – 8.0 7.0 – 8.5
Temperature	Daily or Continuously	Influent	Seasonal
Chlorine residual before de- chlorination	Daily	Secondary Effluent	0.5 - 2.0 mg/L
Coliform bacteria or <i>E. coli</i> after de-chlorination	Weekly	Final Effluent	50-700 MPN/100mL

Odor:

Some Causes:

Septic influent

Poor filter ventilation

Excessive organic loading

Dry zones

Anaerobic conditions

Some Solutions:

Reducing organic load with recirculation

Increasing mechanical air flow

Improve maintenance on rotary arms

Increase dosing rates to wash out excess biological growth

Troubleshoot primary treatment

Filter Ponding:

Causes:

Excessive organic loading leading to excessive growth Uneven distribution of influent flow in the media Accumulation of debris on the top of the filter Excessive insects, snails, moss, algae Insufficient void space

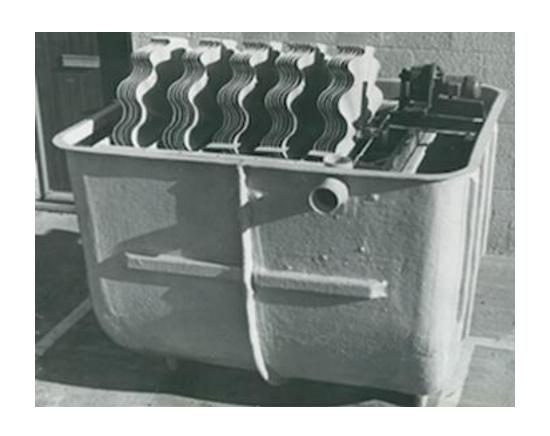
Some Solutions:

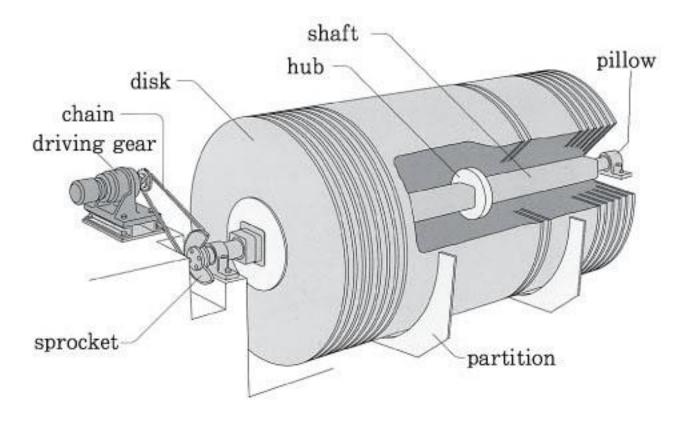
Calibrate organic and hydraulic loading rates and removal efficiency Slow down rotating arm to increase dosing rate and better manage sloughing Flood filter to loosen and flush out excessive growth Screen or replace media

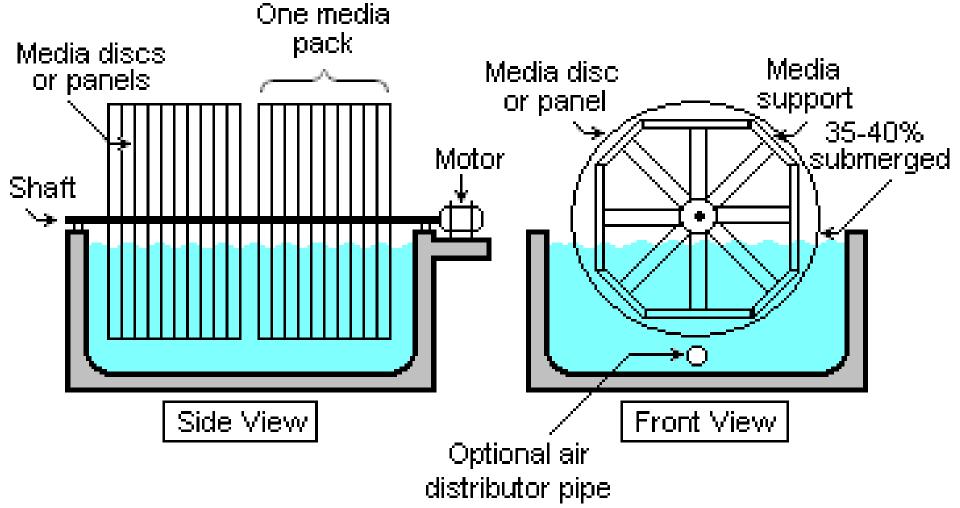
Add treatment units

Sample Tasks (not an exhaustive list)	Frequency
Check that rotary distribution system is running smoothly	Daily
Check bearing oil levels	Weekly
Clean distribution arm orifices	Weekly
Time rotational speed	Monthly
Flush distributor arms	Monthly
Adjust distributor arm levels	Seasonally
Conduct pan tests to test distribution of wastewater over filter surface	As needed

Advantages & Disadvantages


- Low energy requirements
- Low maintenance requirements
- Ability to treat variable organic loads & toxic substances


- Can generate odors
- Can have issues with macrofauna (insects, flies, snails)
- Temperature sensitivity
- Icing in cold weather
- Low flows can immobilize distributor arms in unmotorized systems


Rotating Biological Contactor ("RCB")

RCB's in 1955

RBC Schematic

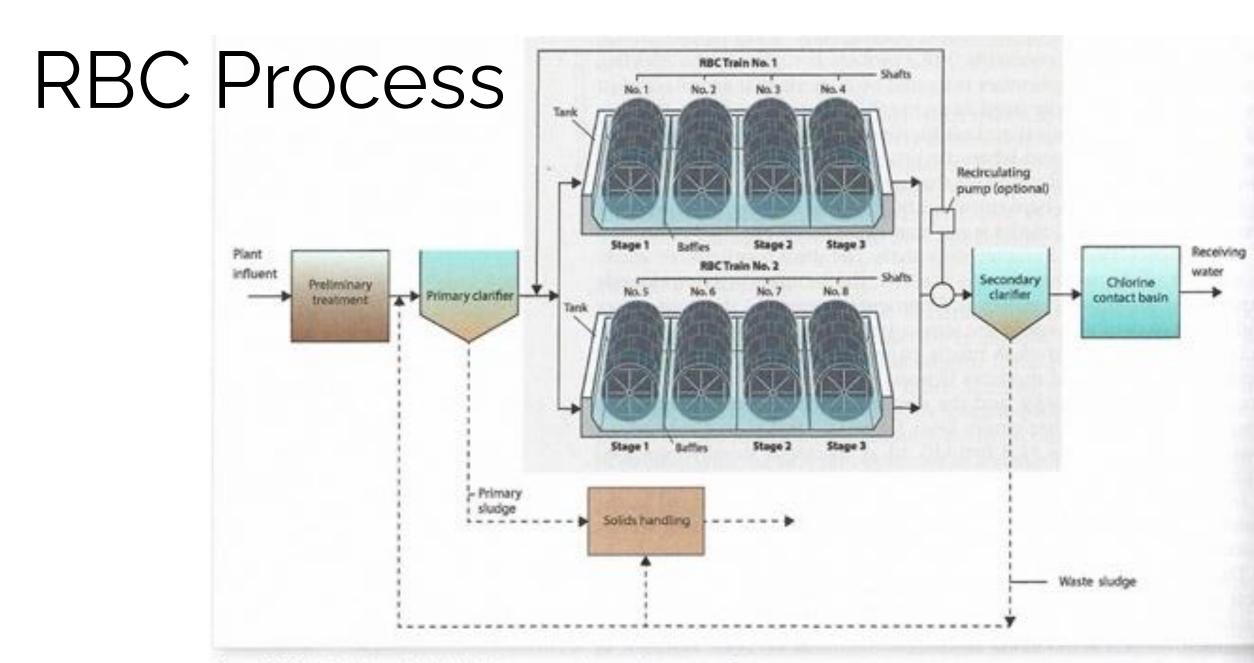


Figure 6.34 Typical rotating biological contactor (reactor) treatment facility

RBC Media Characteristics

Characteristic	Standard Density	High Density
Surface Area	90,000 - 110,000 ft²/shaft	120,000 - 165,000 ft²/shaft
Common use	BOD Removal	Nitrification
Optimal Biofilm Thickness	0.04 – 0.06 in	0.01503 in
Percent of Weight Occupied by biofilm	60 – 80%	60 – 80%

Important Parameters

Organic Loading Rate

- How much organic matter (BOD) is fed into the system in relation to the media volume
- Expressed as:

$$\frac{\textit{lbs of BOD}}{1000 \textit{ft}^3 \textit{Media}}$$

Hydraulic Loading Rate

- How much water is fed through the system per day in relation the media surface area
- Expressed as:

$$\frac{GPD}{ft^2}$$

Removal Efficiency

$$E \left[\%\right] = \frac{C_{in} \left[\frac{mg}{L}\right] - Cout \left[\frac{mg}{L}\right]}{C_{in} \left[\frac{mg}{L}\right]}$$

E = Removal Efficiency

C_{in} = Influent BOD Concentration

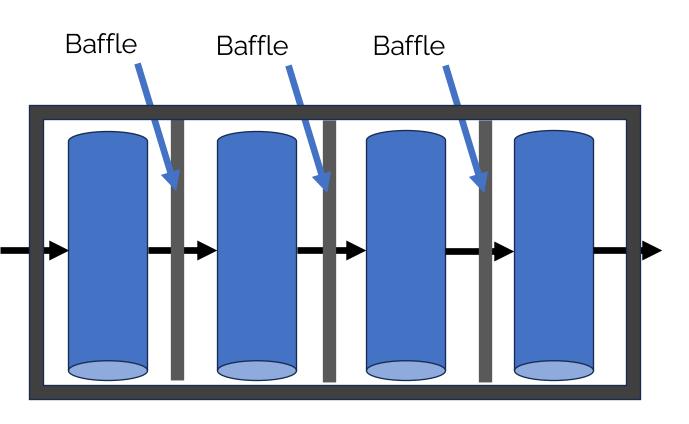
C_{out} = Effluent BOD Concentration

Recirculation

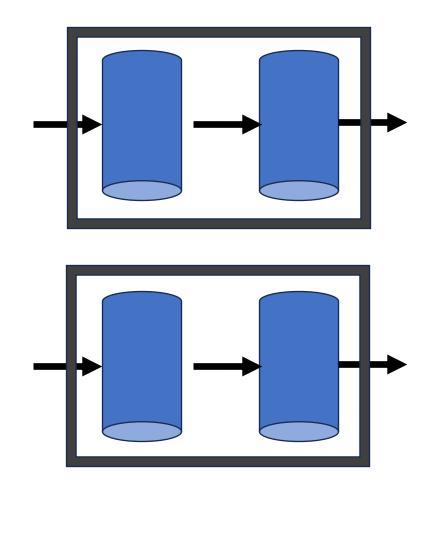
$$recirculation\ ratio = \frac{Q_r \left[\frac{gas}{day}\right]}{Q_{in} \left[\frac{gal}{day}\right]}$$

 $\mathbf{Q}_{\mathbf{r}}$ = Recirculation flow rate

Q_{in} = Influent flow rate

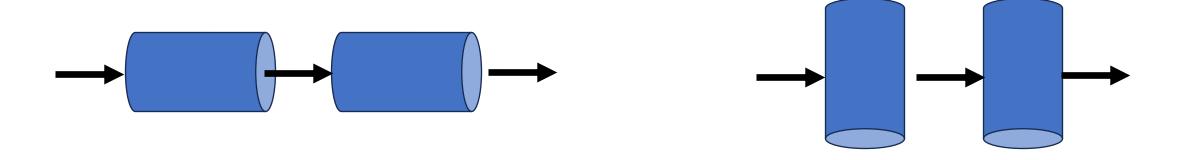

RBC Parameters

Parameter	BOD Removal Only	BOD Removal and Nitrification	Nitrification Only
Wastewater Source	Primary Effluent	Primary Effluent	Secondary Effluent
Media type	Standard Density (100,000 ft²/shaft)	Standard Density (100,000 ft²/shaft)	High Density (150,000 ft²/shaft)
Surface Area	36 ft²/ft³	36 ft²/ft³	55 ft ² /ft ³
Organic Load Rate to Overall Reactor (lb/BOD/d/1000ft³)	3-4	3-4	< 0.5
Organic Load Rate to First Stage (lb/BOD/d/1000ft³)	4-6	3-4	


RBC Parameters

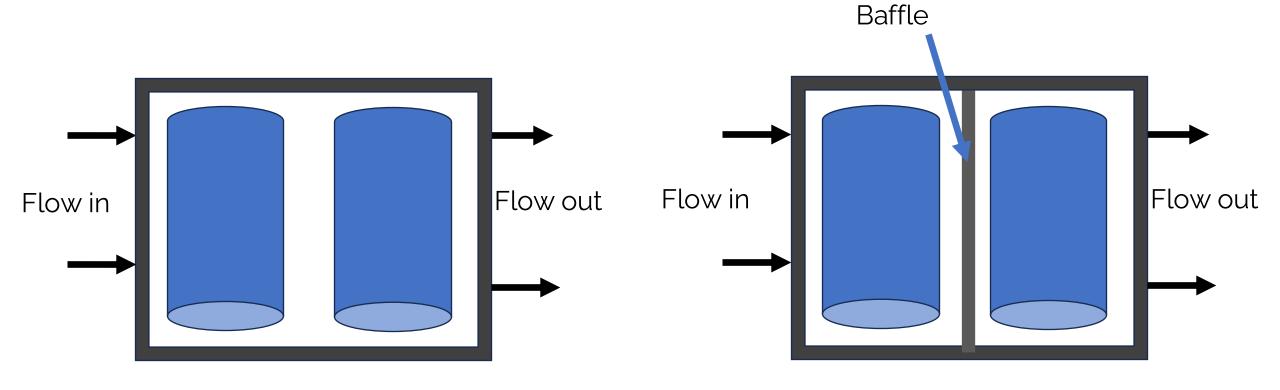
Parameter	BOD Removal Only	BOD Removal and Nitrification	Nitrification Only
Hydraulic Loading Rate (gpd/ft²)	1-3	1-3	1-2.5
Hydraulic Retention Time (hr)	0.7-1.5	1.5-4	1.2-3
Effluent BOD	15-30	7-15	7-15
Effluent NH4-N	N/A	<2	1-2

Trains

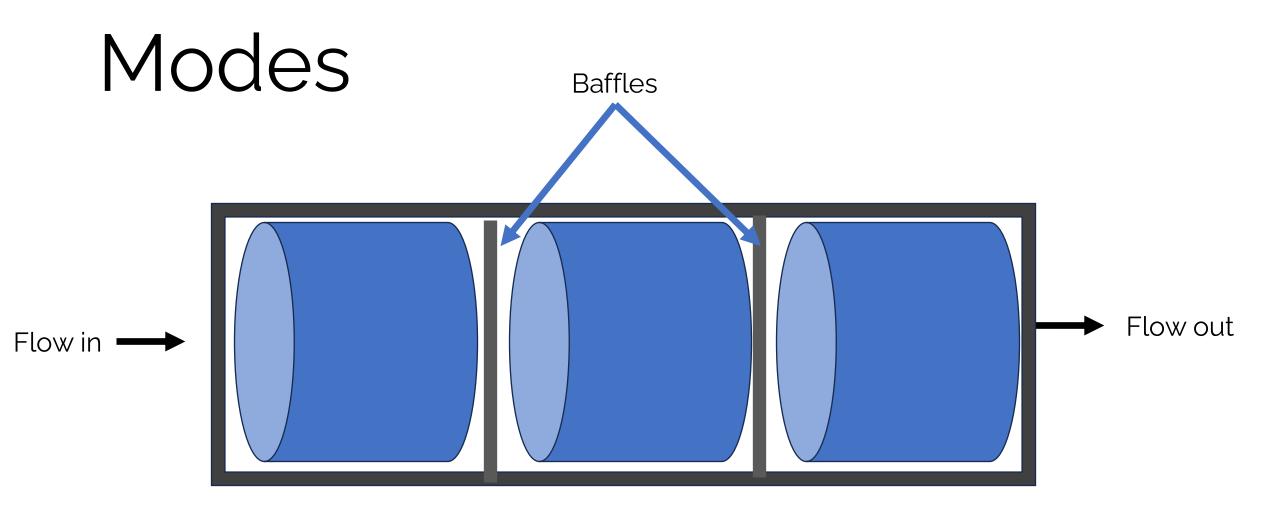


4 RBCs in a single train

4 RBCs in two trains


Direction of Flow

Flow parallel to the shaft


Flow perpendicular to the shaft

Modes

2 RBCs one stage

2 RBCs in two stages

1 RBCs with 3 stages and parallel flow

Some Limitations

- RBCs typically require lower organic loading rates than trickling filters
- They don't provide as much flexibility as trickling filters when it comes to operating over a wide range of organic loading
- They can't be used as roughing filters or as high-rate reactors

Sample Tasks (not an exhaustive list)	Frequency
Check for hot shafts and bearings; listen for unusual noises in shaft and bearings	Daily
Grease mainshaft and drive bearings	Weekly
Inspect chain drives, mainshaft bearings and drive bearings	Monthly
Change oil in speed reducer and inspect belt drives	Every 3 months
Clean magnetic drains in speed reducers	Every 6 months
Grease motor bearings	Annually

CONTACT INFORMATION

swefc@unm.edu

Department of Civil Engineering MSC01 1070 1 University of New Mexico Albuquerque, NM 87131 505-277-0644 swefc@unm.edu http://swefc.unm.edu