New Mexico Climate Factsheet

November 3rd, 2025

Averages Temperature Increase

Precipitation Change

Extremes

Extreme Rainfall & Storms

Extreme Heat & Cold

Wildfire

This can have multiple impacts on utilities. Climate change can...

Climate change affects both typical and extreme weather.

...make it harder to meet community needs for water.

There may be reduced water supply, caused by:

Change from snow to rain, streamflow timing

Increased evaporation & transpiration by plants

Decreased surface water

Decreased infiltration & recharge to ground water

Drv. hvdrophobic soils with increased run-off, less capture contaminants

There may be decreased water quality, caused by:

Biological/microbial growth, e.g., HABs

Heavy runoff and high winds causing erosion, contamination *

Smoke & contamination*

Loss of vegetation, heavy runoff causing erosion, contamination *

Less dilution, higher concentrations of

There may be increased

demands for water. used for:

Human consumption

Gardens, trees. other plants

* Chemical. mineral. organic, and particulate contamination. depending on source.

...affect utility infrastructure.

Extreme weather can lead to:

Damage to physical infrastructure (wells, pipes, treatment, storage, etc.)

Dry soils, pipe breaks

Infrastructure may be inadequate for:

combined stormwater/wastewater overflow

...affect utility administration and operations.

There may be inadequate funding for operations and improvements, associated with:

Population decline, fewer ratepayers

Population increase, causing areater infrastructure

needs

Financing linked to to climate vulnerability, such as bond ratings

Staff and board member availability may decrease due to:

Population decline

Risks to worker safety & health

limiting availability

Stormwater or

Firefighting

It can affect infrastructure

Reservoir levels

operations tied to:

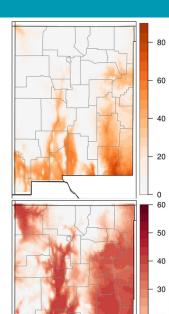
Wastewater evaporation

Water and wastewater treatment chemistry

Telecommunications service & transportation access

Climate Change Projections

Climate science uses models to project temperature and precipitation, considering them in relation to a historical period (1981-2014) and in the future at midcentury (2035-2065) and the end of the century (2070-2099). The conditions are averaged over the entire time period being considered.



Climate science considers more than one possibility for future climate, based on scenarios developed by scientists and adopted by an international organization, the Intergovernmental Panel on Climate Change. The scenarios incorporate different levels of emissions of greenhouse gases, known as "representative concentration pathways" or RCPs, and information about societal and economic futures, known as "shared socio-economic pathways," or SSPs. SSP-RCP 2-4.5 is considered an "intermediate" climate change scenario and SSP-RCP 5-8.5 is considered a "very high" climate change scenario.

Climate science uses global climate models and downscaling to project changes at local scales. The South Central Climate Adaptation Science Center (SC CASC) has used methods known as statistical downscaling on projections from three global climate models from the Intergovernmental Panel on Climate Change in its sixth phase of the Coupled Model Intercomparison Project (CMIP6) to produce regional and local scale projections for the SC CASC region of the United States.

Historical and Projected Future Temperatures and Precipitation Across New Mexico

Historical Temperature Data

Over the historical period in New Mexico, the total number of days in a year over 95°F has ranged from o to 84 days, and the total number of days in a year over 100°F has ranged from o to 35 days, both depending on location.

Map 1: Total Number of Days over 95°F, Average from 1980 to 2014

Intermediate Climate Change Scenario

The number of days over 95°F will range from to 0 to 122 days (an additional 0 to 45 days), and the number of days over 100°F will increase to 0 to 77 days (an additional 0 to 42 days) at mid-century in New Mexico, depending on location.

Map 2: Increase in Number of Days Over 95°F, Intermediate Climate Scenario, Average from 2035-2065

Historical Precipitation Data

Over the historical period in New Mexico, the total precipitation over a year has ranged from 7 to 40 inches, and the maximum precipitation in one day has ranged from less than 1 inch to 2 inches, both depending on location.

10 Map 1: Total Annual Precipitation, Average from 1980 to 2014

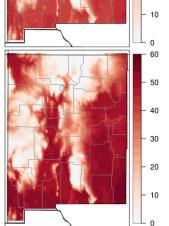
Intermediate Climate Change Scenario

Total precipitation is projected to range from **7 to 40** inches, with a change of **0 to 1 inches** (up to 3%), and the maximum precipitation in a day could increase by **3% to 23**%, at mid-century in New Mexico, depending on location.

Map 2: Change in Total Annual Precipitation, Intermediate Climate Scenario, Average from 2035-2065

Very High Climate Change Scenario

The number of days over 95°F will range from to 0 to 133 days (an additional 0 to 57 days), and the number of days over 100°F will increase to 0 to 89 days (an additional 0 to 55 days) at mid-century in New Mexico, depending on location.


Map 3: Increase in Number of Days Over 95°F, Very High Climate Scenario, Average from 2035-2065

★ For both tempature and precipitation maps, note that the scale changes from historical to projected data.

Very High Climate Change Scenario

Total precipitation is projected to range from 7 to 40 inches, with changes ranging from a decrease of less than one inch to an increase of 1 inch (-5% to 8%), and the maximum precipitation in a day could increase by 3% to 21%, at mid-century in New Mexico, depending on location.

Map 3: Change in Total Annual Precipitation, Very High Climate Scenario, Average from 2035-2065

